Unsettled Borders in a Market Context*

Bailee Donahue[†], Rob Williams[‡], and Mark J. C. Crescenzi[§]

September 24, 2020

Abstract

Border disputes between states can be very costly and disruptive, including major disruptions in trade. From an aggregate perspective, scholars traditionally expect these costs and disruptions to place pressure on states to avoid or resolve these disputes quickly. This view, however, risks oversimplification of the quality of trade and the economic actors driving that trade. We investigate the consequences of complex trade relations on border disputes. Variation in the composition of trade, whether characterized by uniqueness on the global market or readily available substitutes, generates variation in the presence and intensity of domestic pressure to avoid or resolve border disputes. We examine the effects of this variation on dispute behavior using an original dataset that combines product-level trade data (spanning from 1962-2001) with ICOW territorial claims data. The use of product-level trade data allows for the analysis of substitutability options which may reduce exit costs and make it easier to escalate border disputes. This analysis helps us better understand the choice to forego trade due to border disputes, and furthers our understanding of the economic impact of unsettled borders.

10,273 words

Draft: please do not cite without permission

^{*}We thank Sara Mitchell, Paul Hensel, Jack Zhang, and Christopher Lucas for helpful comments.

[†]Department of Political Science, University of North Carolina at Chapel Hill, email: bdonahu@ad.unc.edu, web: baileedonahue.com

[‡]Weidenbaum Center on the Economy, Government, and Public Policy, Washington University in St. Louis, email: rob.williams@wustl.edu, web: jayrobwilliams.com

[§]Department of Political Science, University of North Carolina at Chapel Hill, email.crescenzi@unc.edu, web: crescenzi.web.unc.edu

Introduction

In June of 2020, approximately twenty Indian soldiers died and others were captured in a skirmish with Chinese soldiers along the disputed Indian-Chinese border in the Himalayas. China has yet to release the number of casualties from this outbreak of violence, perhaps as a deescalation technique¹. The tensions over the border have been escalating the prior month as the Chinese and Indian militaries clashed over the disputed territory with Delhi arguing that Chinese forces had crossed the "Line of Actual Control." The escalation in tensions between these two nuclear powered behemoths is thrown into sharper contrast given recent attempts to strike a more conciliatory tone over border disputes in an effort to bolster economic ties between the two countries. A bilateral summit in October of 2019 exemplified this hopeful tone when China's President Xi journeyed to southern India to meet with Indian Prime Minister Modi. The substance of the meeting focused almost exclusively on the bolstering of trade between the two states. President Xi pledged to help India to reduce its trade deficit with China, and the two governments moved to establish regular economic discussions aimed at balancing trade and improving economic ties. Indeed, Prime Minister Modi said "we have decided to manage our differences prudently,' and not let them become 'disputes'" (Pasricha 2019). Both Xi and Modi indicated repeatedly that the economic shared goals would be prioritized over border issues.

The encouraging informal summit contrasts markedly with the situation on the ground in late 2019. Not only have political relations soured to the point of a fatal MID between the two states but at present India and China are using coercive economic statecraft against one another. Some of these efforts are bottom-up, as Indian citizens delete Chinese apps from their phones and take to the streets to protest China. Other efforts appear to be directed by the Indian government. It has been reported that state and public sector companies have been asked to cease issuing contracts to Chinese companies. A signalling

¹As of, September 3, 2020.

project that was given to a Chinese company in 2016 has been cancelled. The government has requested that e-commerce companies reveal the country of origin for products being sold. Both China and India have increased anti-dumping duties on one another and India renewed tariffs on solar photovoltaic cells from China, Thailand, and Vietnam.

Tensions escalated from economic hostility to physical violence in 2020. Soldiers on both sides were injured in clashes in Eastern Ladakh in early May (Peri 2020). By the end of the month India and China had mobilized thousands of soldiers near the Line of Actual Control (Ellis-Petersen 2020). In July unarmed troops engaged in a pitched battle using improvised weapons that resulted in the deaths of 20 Indian soldiers and an unknown number of Chinese soldiers (Safi, Ellis-Petersen & Davidson 2020, Wu & Myers 2020). Further exacerbating the strained relationship between the two countries, both India and China are engaged in a sustained road building program to cement their control of the region (Jakhar 2020). Despite these aggressive moves, foreign ministers from both states proclaimed their mutual desire to deescalate the situation and work towards disengagement at the Shanghai Cooperation Organisation meeting in Moscow on September 10 (Crossley & Miglani 2020). Whether this latest attempt at resolution will be successful remains to be seen.

The issue that China and India face in attempting to reduce their dependence on one another is that it may already be too late. Several key sectors of the Indian economy, such as pharmaceuticals and solar, are heavily reliant on intermediary products from China that are not easily substituted in the global economy (Dhar & Rao 2020). The tight integration of the two countries' economies makes divestment a costly proposition for both.

The two countries are engaged in a multidimensional balancing act. On the one hand, China and India have worked hard to explicitly focus on improving economic ties even without settling their border disputes, both through bilateral interactions and through the promise of potential regional trade agreements. On the other hand, border tensions continue to threaten the drive to strengthen trade.

As it stands, the two countries may have been too successful in entangling themselves with one another to be able to settle their border dispute. While it is too early to know just how well Xi and Modi will manage this tension, the Jekyll and Hyde nature of the relationship is illustrative of a more general question. How do complex trade ties affect the management and resolution of territorial issues such as the border disputes that have strained ties between India and China for over fifty years? Can the promise of improved trade and the fear of lost economic exchange (exit costs) motivate states to resolve longstanding border issues?

Our expectation is that increased exit costs can increase the motivation to initiate new claims as tightening economic connections reduce fear of exit from the relationship. Once a claim has been initiated, rising exit costs will increase the propensity for a state to escalate the claim to a militarized interstate dispute. Further, rising exit costs decrease the propensity for the dyad to settle the claim.

To allow us evaluate the impact of trade on border dispute management, we develop a new measurement of trade networks to estimate trade complexity and exit costs in bilateral relationships. Drawing on a dataset of nearly 1,400 traded commodities over five decades, we use principal component analysis to identify patterns of trade that are both monetarily large and categorically unique. Trade flows that have both of these attributes characterize bliteral relationships with high exit costs. This unsupervised learning approach has many desirable properties, chief among them that it does not require researchers to a priori select relevant commodities or develop subjective weighting schemes for different types of commodities.

This paper thus makes two contributions to the literature on economic exchange and international conflict. First, it provides insight into how interdependence can affect the onset and management of territorial disputes. While existing work largely focuses on the economic impact of unsettled borders (Simmons 2005, Schultz 2015), we explore how economic exchange may affect the initiation new territorial disputes. Second, it presents

a new measure of exit cost in bilateral trade that can be employed in many analyses of international interaction.

Trade, Conflict and Territorial Disputes

This paper brings together two large bodies of literature. The first considers the role of territorial disputes in conflict as well as declines in mutual economic gain between disputants. The second body of literature considers the broader linkage between trade and conflict. Yet, with a few notable exceptions, these three phenomenon — territorial disputes, conflict, trade — have not been cohesively integrated. This is especially true when we consider the role that increasing economic integration has in promoting the peaceful settlement of conflict or perhaps the escalation of conflict over territory.

There has been a robust positive relationship found between unsettled territorial claims and increased risk of military conflict between disputants (Vasquez & Henehan 2001, Hensel 2001, Hensel 1996, Kocs 1995). Territorial disputes have also been linked to the rise of long-term rivalries between disputant states (Owsiak & Rider 2013, Rider & Owsiak 2015). The increased propensity for conflict and rivalry has been linked to a propensity for a larger standing military and increased centralization of the government within disputants (Gibler 2012). Accordingly, even when conflict does not occur between neighbors engaged in territorial disputes there are more economic resources that are being used in service of guns rather than butter. Due to the apparent high costs associated with unsettled borders and violence, several studies have attempted to pin down under what conditions conflicting territorial claims are initiated (Hensel 1996, Abramson & Carter 2016, Carter 2017, Carter & Goemans 2011, Carter & Goemans 2013); under what conditions these claims escalate to war (Carter 2010, Huth & Allee 2002, Huth, Croco & Appel 2012); and how these claims are resolved (Huth, Croco & Appel 2011, Mattes 2008). Settling disputed borders by adopting a

legally binding border or by adopting territory has also been shown to promote the reduction in conflict between neighbors (Owsiak 2012, Kocs 1995, Tir 2006, Schultz 2014).

Even when borders do not result in militarized disputes between states, unsettled borders have been linked to economic loss due to the institutional uncertainty that arises between states. Simmons(2005) argues that unsettled borders may increase transaction costs associated with moving goods across borders due to unclear jurisdiction. Further economic actors within states may avoid trade with the disputant state because of the risk of trade disrupting behavior. In a subsequent study, Schultz (2017) finds evidence that much of the trade dampening impact of unsettled borders comes from risk of trade disrupting behavior. Apart from trade, foreign direct investment has also been found to suffer during periods of competing territorial claims between states (Lee & Mitchell 2012, Carter & Goemans 2018). Alternatively, the anticipated economic gains from resolving territorial issues has been used as an incentive for promoting peaceful border settlement (Schultz 2015). In particular, the border dispute between Ecuador and Peru in 1998 is often used as an example of states being compelled to resolve their territorial dispute (incentivized by third-parties) to normalize relations for economic gain (Simmons 2006).

The literature has clearly established that unsettled borders can result in conflict and that unsettled borders are linked to declines in bilateral trade between disputants. It remains theoretically unclear the extent to which trade may reduce the incentive to enter into costly disputes over territory, the ways in which uneven trade relationships may be leveraged against disputants, or how trade may impact the level of hostility between disputants. The institutional view of border settlement puts forward that the foregone benefits of clearly defined institutions and a reduction in the risks associated with the resolution of territorial claims should be incentive to resolve territorial disputes. Increasing economic integration and joint gains should be peace inducing in this opportunity cost mechanism. Unfortunately, these expectations do not necessarily follow from the broader literature on

trade interdependence and conflict.

The theorized relationship between trade and conflict has historically taken three forms: 1) greater dyadic trade interdependence results in decreased probability of conflict in the dyad (Oneal & Russet 1997); 2) greater dyadic trade interdependence results in increased hostility in the dyad (Barbieri 1996, Barbieri 2002); and 3) trade is actually not that important in the decision for states to go to war. Scholars that are proponents of greater trade interdependence being peace inducing argue that increased bilateral trade between states results in greater peace have noted two mechanisms underlying this commercial peace: signaling or opportunity cost (Gartzke, Li & Boehmer 2001, Polachek & Xiang 2010). What should be observed with regards to these two mechanisms is that dyads with higher levels of bilateral trade should be more peaceful than those with lower levels of bilateral trade. Others note that gains from trade do not accrue evenly between partners and that these asymmetries may actually induce conflict(Hirschman 1945, Barbieri 1996). Still others argue that information about strategic dynamics are needed to evaluate the overarching relationship (Crescenzi 2005). The above is suggestive of the janus-faced nature of trade when it comes to the ways in which it can promote peaceful or conflictual relations between states.

The divergent findings in the literature are due in part to the sensitivity of empirical tests to the qualities of trade that are being measured (Mansfield & Pollins 2001). Scholars using aggregate bilateral trade flows or trade asymmetries may have conflictual findings due to the ways in which they are operationalizing this interdependence. More recent work has sought to include caveats in the relationship between trade and peace to explain the conditions under which trade can be peace inducing and the conditions under which trade can be conflict inducing. Of particular importance for this present study is the emergence of exit costs which extends the opportunity cost mechanism to consider both the extent of economic ties between states and the substitutability of those economic relations (Crescenzi 2005, Peterson 2014). The substitutability of trade is an important intervening variable in

the study of trade flows. Simply having higher levels of aggregate trade does not necessarily instill restraint between disputants if both can easily re-route trade to alternative markets. On the other hand, relatively small amounts of bilateral trade may be peace inducing if neither trade partner can reap similar gains if trade is re-routed.

A similar logic may be applied when considering territorial disputes. In her work on the role of borders and trade, Simmons (2005) suggests an underlying opportunity cost mechanism regarding unsettled borders similar to that of the broader literature on trade interdependence and conflict. The lack of resolution of territorial boundaries results in a dampening of bilateral trade between partners but do higher levels of opportunity cost instill caution between potential disputants? In her work, Simmons does not directly hypothesize the substitutability of trade partners for disputant states given that substituting contiguous trade partners is unlikely to absorb all foregone trade. This likely varies depending on the composition of trade between potential disputants. Further, the potential asymmetry in dyadic trade relationship between disputants informs the opportunity cost of unsettled borders. The opportunity cost of exiting a relationship with a contiguous state likely influences when new disputes arise and when disputes escalate.

Apart from the dampening impact of unsettled borders on bilateral trade, little is known about the quality of trade between states when claims are initiated and when these claims escalate to conflict. The institutional view of borders described above suggests that even initiating a competing claim can be met with increased transaction costs as well as potential risk for conflict between disputants. Further, the economic gains and the reduction in the uncertainty surrounding transaction costs from settled borders should create incentives for states to resolve their unsettled borders. In this study, we endeavor to bridge this gap by considering the role of economic exit costs in the escalation of territorial claims. We argue the economic relationship between potential disputants impacts the ability to both initiate claims and escalate those claims to conflict.

The Economic Peace and Territorial Conflict

In this paper, we argue that exit costs may have divergent impacts on the relationship between claim-making and the escalation of a claim to violence or de-escalation to settlement attempts. In order to analyze this argument, we break our hypotheses and our analyses into two stages: the onset of territorial claims and the management of territorial claims.

In the first stage of the onset of territorial claims, where states issue new claims over territory, high exit costs may increase the propensity to issue a new territorial claim. While this may seem counter-intuitive, claim-making when exit costs are high can potentially shield states from the possibility of escalation to a MID. At this stage, states that initiate a claim are engaged in a game of brinksmanship where they hope to coerce their targets into making concessions while relying on economic interdependence to prevent the outbreak of more dangerous hostilities. This logic of coercion yields the following hypothesis:

Hypothesis 1: When exit costs increase for at least one state in a contiguous dyad, a territorial claim is more likely to be initiated.

At the second stage, once a claim has already been initiated, the impact of exit costs on the maintenance of an ongoing dispute diverges from the above discussion. We argue that as exit costs increase, this increases the leverage that can be brought to bear on a disputant in the dyad. This increased leverage at the higher reaches of exit cost may increase the propensity for states to escalate to militarized violence. This follows Crescenzi's (2005) expectations regarding the inability of exit costs to provide a check on conflict, making bargaining via the economic relationship shared in the dyad difficult to leverage. This results in the following hypothesis:

Hypothesis 2: If a territorial claim exists, increasing exit cost increases the likelihood of conflict.

The choice that states in a dispute face is not a binary one between escalation of violence and maintenance of the status quo. They can also seek to resolve the dispute peacefully, whether bilaterally or as part of a multilateral mediation process. Settlement attempts may also occur bilaterally in international institutions such as the International Court of Justice or the International Tribunal for the Law of the Sea. Settlement attempts are complex processes that vary greatly in the degree to which proposals are binding, the level of outside enforcement, and the timeline for resolution (Owsiak & Mitchell 2019, Wiegand, Powell & McDowell 2020). Many disputes witness several rounds of settlement attempts without success, and even peacefully resolution frequently takes many attempts.

Once a claim has been initiated, increasing exit costs may actually decrease the propensity for a state to attempt to settle its territorial claims via negotiation. Similar to the increased propensity for conflict, exit costs on the higher end of our measurement of exit cost may be ineffective when being leveraged to resolve a dispute. Rather than settling a territorial dispute unfavorably due to the economic leverage the partner state may impose, states may prefer to maintain the status-quo and not resolve their disputes. This logic suggests a commitment problem where disputants at a disadvantage economically are unwilling to settle on unfavorable terms due to fears that their adversary will continue to grow in strength (Fearon 1995, Powell 2002). States in this situation prefer to continue lowered absolute gains from trade than risk relative gains to their adversary with the resolution of the dispute and the transfer of the territory. This results in the following hypothesis:

Hypothesis 3: If a territorial claim exists, declining exit costs will increase the propensity for settlement, and increasing exit costs will decrease the propensity for settlement.

With our hypotheses in place, we now turn to our empirical test of the above hypotheses. A primary focus of this discussion concerns the measurement of exit costs in bilateral trade relationships.

Research Design

We test our predictions in a sample of all contiguous dyad-years in the international system from 1962 to 2001. Our unit of analysis is the directed-dyad-year as each state in a bilateral trading relationship can face asymmetric exit costs due to differences in their export portfolio. Focusing our analysis on all contiguous dyads allows us to consider all states that may have territorial disputes. In this analysis, we define a contiguous dyad as two states that either share a land border or are separated by less than 400 miles of water. These dyads are taken from the ICOW contiguous dyad dataset (Stinnett, Tir, Diehl, Schafer & Gochman 2002). The UN Comtrade data that we use to measure exit costs begin in 1962, so this sets the starting point for our analyses.

Dispute Onset and Outcome

For our onset hypothesis, we first require a measurement of whether or not a territorial claim is made in a given year. We develop a binary dependent variable which takes on the value of 1 if there is a territorial claim made in a year and 0 if no claim is made.² This indicator is taken from the ICOW territorial claims dataset (Frederick, Hensel & Macaulay 2017). The ICOW territorial claims dataset defines a territorial claim as being present under the following conditions:

"There must be explicit competing claims to territorial sovereignty; statements that are vague or do not specifically demand sovereignty do not qualify (such as demands for the independence of a secessionist territory rather than its transfer to the demanding state), nor do demands over the usage of territory (such as demands over the treatment of minorities or sharing of cross-border resource deposits). These statements must concern specific territory; vague statements seeking Lebensraum, energy sources, or a route to the sea without specifying a specific territory do not qualify. Finally, these statements must be made by

 $^{^{2}}$ We have also created a count of the number of claims that occur in a dyad in a given year and will hopefully use this measurement as a robustness check

official government representatives who are authorized to make foreign policy; statements by private citizens, legislators, or soldiers do not qualify unless they are supported by foreign policymakers such as the president, prime minister, or foreign minister and thus represent official policy." (Frederick, Hensel & Macaulay 2017)

Accordingly, we select territorial claims made by contiguous dyads, as defined above, for our analysis.

For our second set of hypotheses regarding the maintenance stage of a territorial dispute, we only include dyads that currently have an ongoing dispute which limits our number of dyad-years. For this set of hypotheses we develop an unordered indicator that can take on four values. The first value is *Status Quo* which indicates that no escalation or attempts at settling the dispute occurred in a given year. Next we code an *Escalation* as occurring if there is a report in an increase in the maximum hostility index created by the ICOW territorial dispute dataset for that given dyad year. We code a *Settlement Attempt* as occurring if there is a record in the ICOW territorial dispute dataset that an attempted bilateral negotiation occurred in a dyad year. Finally, we code a variable *both* if both a settlement attempt and an escalation occurred in the same year.³

Exit Costs

In order to operationalize the actual cost of exiting an economic relationship with a disputant, we develop a yearly dyadic measurement of exit costs for each directed dyad. Accordingly, we develop a measurement of State A's exit cost from ending economic interaction with State B and similarly State B's exit cost from ending economic interaction with State A.

In his study of exit costs and conflict, Peterson (2014) develops commodity level

³In future iterations of this paper, we hope to disentangle the timing of this *both* category. Of course, the timing of which comes first in a dyad year may have important consequences for whether attempts at leveraging exit costs have resulted in an escalation or an escalation results in attempts at negotiation.

measurements of elasticity by country and two digit SITC commodity code. In this study, we refine his strategy by employing the UN Comtrade data which underlie the Feenstra, Romalis & Schott (2002) data. The Comtrade data offer multiple advantages over the earlier et al. data. First, they begin in 1962 instead of 1972, allowing us to include an additional 10 years in our analyses. They are also available through 2018 so while our analyses end in 2001 due the temporal scope of the ICOW data, we are able to generate measures of exit cost for an additional 17 years compared to the Feenstra et al. data's endpoint of 2001. Second, the Feenstra et al. data are disaggregated to the four digit SITC commodity code level, while the Comtrade data are disaggregated to the five digit level. This allows us to develop a more nuanced measure of exit costs as we discuss below. Finally, Kim, Liao & Imai (2019, 5) find that the Feenstra et al. data have missing values for over 200,000 observations that have positive values in the Comtrade data for 1962 alone. By using the more complete Comtrade data, we are able to construct a more accurate measure of exit costs in bilateral trade.

While previous studies have described these data, it is worth taking time to discuss them in more detail. Commodities are represented by five digit Standard International Trade Classification (SITC) commodity codes. Each digit describes successively more differentiated product categories. Figure 1 illustrates the structure of the data from one to five digit SITC commodity codes for commodity 28792: Tungsten ore and concentrate. The two digit code 28 also contains copper, aluminum, and titanium ore, precious metals, and steel scrap. Each of these metallic commodities serves very different roles in production chains, and is worth vastly different amounts of money. Aggregating all of them together, along with 15 other commodities, under the two digit code discards large amounts of information and treats all nonferrous ore and scrap metal as substitutable.

The unit of observation is the reporter, which is a state that reports trade flows from a partner. States report both their imports and their exports, so each directed-dyadcommodity trade flow appears in the data twice. This double reporting may seem redundant, 2: Crude materials, inedible, except fuels

28: Metalliferous ores and metal scrap

287: Ores and concentrates of base metals, nes

2879: Ores and concentrates of other non-ferrous base metals

28792: Tungsten ore and concentrate

Figure 1: Structure of commodity codes for 28792: Tungsten ore and concentrate

but there are actually extensive discrepancies in reporting throughout the data. For example, Cuba reports importing \$38,450 of Under garments knitted, not elast. Nor rubberd from the United States in 1991. While the UN notes that discrepancies in official trade statistics can be due to differences in partner attribution (whether overseas territories are included in their parent country or not), the use of different cost of freight measures, and the use of different systems to aggregate national trade statistics (Statistics Division; Economic Statistics Branch 2019). However, this specific case almost certainly cannot be attributed to these sources of incidental reporting error as the United States has maintained a near total embargo on Cuba since 1962, excepting food and medicine.

Although we cannot know the source of this discrepancy, it does highlight that some reporting discrepancies may be due to deliberate and strategic processes on the parts of reporters.⁴ In light of these patterns, we account for discrepancies in a way that previous studies do not. Kim, Liao & Imai (2019) use importer reports when available, and exporter reports when not available, based on the assumption that importers will more accurately know the true value of the transaction. This approach treats discrepancies as non-random, but systematic and straightforward sources of measurement error. The Cuba case above suggests that discrepancies may be most prominent in the cases most likely to be involved in territorial disputes and could reflect illicit smuggling flows between the two states. To address this possibility, we use the mean of importer and exporter reports for each directed-dyad-commodity flow. While this strategy does not explicitly model the sources of discrepancy, it should reduce measurement error in the most relevant cases.

⁴Future drafts will include descriptive statistics of reporting discrepancies across the data.

The dyadic exit cost measure in Peterson (2014) is simply a sum of the dyadic exit cost measures for all SITC two digit commodities traded by the dyad in a given year. This assumes that the supply and demand of each subcomponent of each SITC two digit category is equally elastic. For example, the SITC two digit code 28 Metalliferous ores and metal scrap contains the SITC 5 digits codes 28399 Other ores & conc.of non ferrous base metals, 28393 Ores & conc.of titanium,vanadium,molybdem,etc., and 28501 Ores & conc.of silver,platinum,etc.. The demand for precious metals is likely to be more inelastic in an economy with a large electronic component manufacturing sector due to the profitability of these industries. Using highly aggregated commodity categories like these masks important variation in the patterns of trade between states. To illustrate the scale of this issue, there are 68 different SITC two digit commodity codes and 1,396 different SITC five digit commodity codes traded between 1962 and 1991.

Moving to more disaggregated trade data presents new challenges, however. Applying Peterson's strategy would require running over five million regressions, which represents an enormous computational task. To deal with this problem, our approach employs principal component analysis (PCA) to perform dimensionality reduction on the full SITC five digit commodity code directed dyad-year dataset. We first discuss the mathematical properties of PCA and then highlight how they align closely with common conceptualizations of exit cost.

Principal component analysis is a standard technique for unsupervised learning. It was originally developed as a way to generate linearly uncorrelated components from correlated inputs. It is also frequently used for dimensionality reduction to extract the most predictive information from large datasets. We employ PCA to reduce the dimensionality of the Comtrade data to $k \ll 1,396$ and in the process extract the most extreme dimensions of trade which will have the highest exit costs. Researchers often standardize inputs to PCA to avoid high variation in one component overwhelming the variation in other components

due to differences in the scale of each input (Jolliffe 2002). A classic example is standardizing heights measured in inches with weight measured in pounds given the differing scales for each. We do not standardize our data because our inputs are all already measured on the same scale; current US Dollars. As the data were downloaded from Comtrade in 2019, all trade values are in 2019 US Dollars. Standardizing inputs would actually mask the importance of commodities with high trade volumes, so we leave our inputs untransformed.

The Comtrade data are organized into an $n \times p$ matrix \mathbf{X} with n directed dyad-years and p commodities. The transformation maps each row vector \mathbf{x}_i to a new vector of principal components scores $\mathbf{t}_{(i)} = (t_1, \dots, t_k)_{(i)}$ using a vector of weights $\mathbf{w}_{(k)} = (w_1, \dots, w_p)_{(k)}$. The scores are calculated as $\mathbf{t}_{(k)} = \mathbf{w}'_{(k)}\mathbf{X}$ such that each successive set of scores $\mathbf{t}_{(k)}$ contains the maximum amount of variation possible from \mathbf{X} (Jolliffe 2002). The weights for the first principal component \mathbf{w}_1 that maximize the variance in $\mathbf{t}_{(1)} = \mathbf{w}'_{(1)}\mathbf{X}$ are often found via singular value decomposition (Hastie, Friedman & Tibshirani 2009, 534-541).

The second principal component $\mathbf{t}_{(2)}$ is found such that it maximizes variance while being uncorrelated with $\mathbf{w}'_{(1)}\mathbf{X}$ (Jolliffe 2002). The full principal components decomposition of \mathbf{X} can be given by $\mathbf{T} = \mathbf{X}\mathbf{W}$, where \mathbf{W} is a $p \times k$ weights matrix. Setting k < p retains the first k components, yielding uncorrelated components that can explain a portion of variance in the data. Following common practice for such dimensionality reduction (Jolliffe 2002), we perform PCA using a range of values $k \ll p$ and plot the number of components against the cumulative proportion of variance explained in Figure 2. We do this for each year separately to account for the fact that the composition of global trade fluctuates over time.

Based on Figure 2, we set k = 25 which preserves approximately 95% of total variance in the trade data. In doing so, we extract the underlying dimensions of trade with the highest variation, and thus the highest exit costs for exporters that are outliers on those dimensions. PCA assumes that data are *iid* so we perform the dimensionality reduction

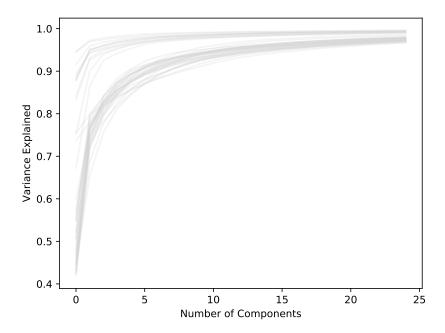


Figure 2: Cumulative proportion of total variance in trade explained by year

task independently for each year in our data.⁵ We take the average of all 30 components to construct our measure of *exit cost*, which is measured at the directed-dyad-year level.

In Figure ?? we perform this process with up to 100 components. 100 components only recover approximately 97% of variation, which demonstrates that these data introduce additional nuance into our measurement of exit cost compared to previous measures that used the 68 two digit commodity codes. If these 68 codes were sufficient to summarize all variation in the trade data, then 68 components should recover 100% of the variation in the data. As they fail to do so, this suggests that our use of all 1,396 commodities is an improvement over previous measures. While we use only 30 components, this choice captures the most salient dimensions of trade while excluding statistical noise.

Intuitively, features (commodities) with higher variance contribute more informa-

⁵While this approach avoids violating the *iid* assumption, it introduces other issues as the components of trade are dependent on annual trade patterns and thus no longer directly comparable across years. In a future version of this paper, we will explore using methods such as singular spectrum analysis to perform this decomposition in a way that accounts for the time-series nature of the trade data.

tion toward predicting an outcome (border disputes) because they cover a larger range of potential values. PCA yields components with the maximum possible successive variance, making it ideal for reducing multicollinearity in a regression context. This property is a good match with our substantive goal of measuring exit costs in dyadic trade relationships, and we detail how PCA captures this process below.

Consider a hypothetical in which several states trade two commodities, c_1 and c_2 , and we wish to use PCA to reduce two dimensions of trade to one. If all states trade a roughly equal amount of c_1 while c_2 is unevenly traded with some states importing and exporting large amounts, and other states abstaining from trade, its contributions to the first principal component $\mathbf{t}_{(1)}$ will be eclipsed by c_2 . States would have a very low exit cost for c_1 as any state i that ceases trade in commodity c_1 with state j would lose only a small amount of trade revenue and would have many alternative trading partners -j. As c_2 is unevenly traded, states that refrain from trade in c_2 would have zero exit cost for c_2 , while states that trade heavily in c_2 would face high exit costs due to the limited number of alternative partners and the higher amount of foregone trade revenue. As commodity c_2 has much higher variance across states, it will contribute much more heavily to the first principal component $\mathbf{t}_{(1)}$. The first principal component will incorporate some of the exit costs for c_1 but will give more weight to exit costs for c_2 due to its higher variance. Thus, PCA discovers the most salient dimensions of trade with the highest exit costs from the data without requiring input from researchers.

In sum, our approach to measuring exit costs in bilateral trade offers multiple advantages over previous strategies. First, by incorporating all 1,396 commodity codes into our measure, we do not assume that all commodities under each two digit code are traded equally and are equally important to states. Second, PCA captures the underlying variation in trade data while omitting statistical noise, improving the efficiency of our eventual analysis. Third, it produces a measure that varies yearly, unlike the elasticity measure that

Peterson (2014) develops.

Before discussing our statistical tests, we first examine the properties of our PCA-derived estimates of exit cost to validate the measure. Recall that the kth principal component is a linear combination of the data \mathbf{X} and a weight vector $\mathbf{w}_{(k)}$. Thus $w_{(k)_p}$ represents the marginal contribution of commodity p to component k. Identifying the commodities that make the largest contribution to the first principal several components allows us to assess the face validity of our measure by comparing them to commonly-held understandings of exit cost in international trade.

Figure 3 presents the three largest weights for the first component $\mathbf{w}_{(1)}$ for each year in the sample. The first and second component have commodities with weights that appear consistently across the time-series, suggesting that there is a continuity to the measure from year to year. The third component has fewer uninterrupted appearances in the top three weights, indicating the the first two components are more stable over time. This pattern indicates a trade regime where a handful of commodities are characterized by persistently high exit costs while others vary more over time.

The dominant commodity in the first component is 331010 Crude petroleum by a wide margin. Oil is vital to the functioning of an industrialized economy and commands a high price, so terminating a trade relationship that includes high oil flows would be very costly. Only a handful of nations produce oil in industrial quantities, meaning that the loss of a trade relationship would leave few alternative sources to turn to. Accordingly, it seems that our measure incorporates both exit cost and exit options.

It is important to note that although oil has the largest weight for the first component for much of our sample period, this does not mean that our measure is dominated by oil flows. Oil is the largest contributor to the first component, which contains the largest amount of variation, but it is not nearly as dominant in subsequent components. The mea-

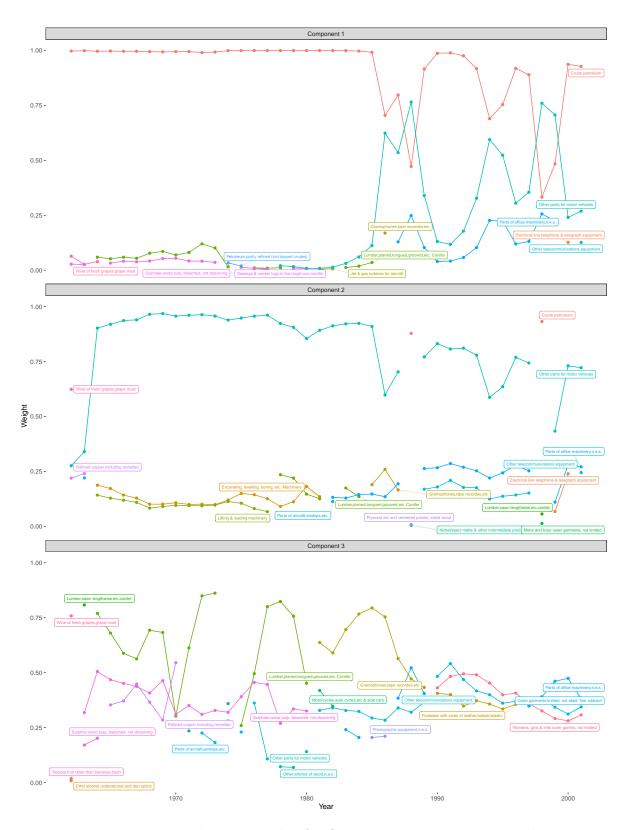


Figure 3: Three largest weights for first three components annually

sure accounts for the importance of oil flows while also incorporating information on other commodities that are unevenly traded across the international system and thus have high exit costs and few exit options. In the two years where the weight on oil for the first component dipped below the weight on motor vehicle parts, oil is the commodity with the largest weight for the second component. This pattern tells us that oil was a smaller contributor to exit costs in those two years because there was less variance in trade patterns for oil those years. These two years correspond to large downturns in the price of oil, which is consistent with oil contributing less to exit costs in those years.

The largest weights for the first three components also include many capital intensive commodities such as 71842 Excavating, levelling, boring, etc. Machinery, 19391 Lifting & loading machinery, 73289 Other parts for motor vehicles, 72499 Other telecommunications equipment, and 73492 Parts of aircraft, airships, etc.. These commodities are important to industrialized economies and are also available from a limited number of trading partners.

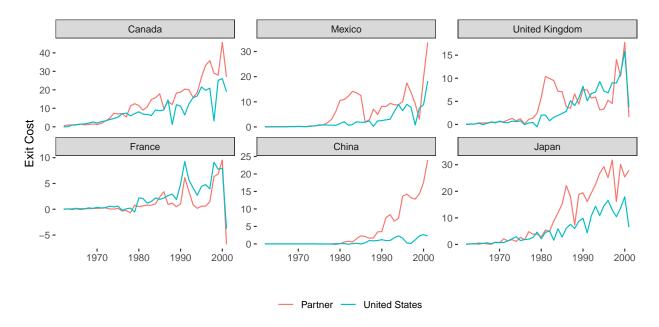


Figure 4: Exit cost time-series for the United States and trading partners

⁶See the SI for a detailed presentation of these oil price data.

To further validate our measure of exit cost, we also explore patterns of the overall exit cost measure between states over time. Figure 4 displays exit costs for the United States and six trade partners for the sample period. In general, the United States has lower exit costs than its trading partners, reflecting the fact that the US is a large consumer of products from around the world. Exit costs in the US-China dyad are jointly low through 1990, but as Chinese imports to the US increase from 1990 onward, Chinese exit costs increase dramatically, highlighting the dependence of China on exports to the US. Exit costs in relationships with neighboring Canada and Mexico are more symmetric, mirroring the frequent economic exchange in both direction across borders.

Finally, it is important to note that while we limit our empirical analysis to contiguous dyads due to the importance of contiguity for the initiation of border disputes, we create our measure of exit costs on the entire global trade dataset. If country i trades a large amount of a commodity with country j, this would appear as a high exit cost if few other countries in the contiguous-dyad sample trade the commodity. However, if many other countries not in the contiguous-dyad sample trade comparable amounts of the commodity, state i's exit costs will be lower as they are losing only a small fraction of their trade revenue from the commodity. The inclusion of all international trade flows also better captures the idea of exit option. Finding alternative trade partners among other neighboring states may be easier and cheaper than looking farther afield, but states that initiate border disputes are able to try and substitute lost trade with any other state in the world. Our exit cost measure thus accounts for the fact that states are integrated into the global economy and have a wealth of potential alternative trade partners beyond their immediate neighbors.

Control Variables

Following the literature on territorial disputes, we include a number of control variables to account for relevant factors in our analyses. We control for the size of the economies involved in the potential dispute by including the natural log of the lower GDP in the dyad (Peterson 2014). We also control for the balance of military capabilities between states in the dyad (Huth & Allee 2002) using the log of the ratio of the challenger's CINC score to the target's (Singer 1988). In addition, we include the joint polity score (Marshall, Gurr & Jaggers 2014) of the dyad, which ranges from -20 to 20 (Peterson 2014). We include information regarding whether states in the dyad are OECD countries. We include another indicator regarding whether or not the actions we are studying occur during or after the Cold War as the propensity for changes to the territorial order increase when there are changes to the international balance of power(Abramson & Carter 2016). We include a measurement of the log of the number of commodities traded in a dyad in a given year to control for the potential size of the trade relationship. Finally, we note whether both states in a dyad are in an alliance (Leeds, Ritter, Mitchell & Long 2002) as alliance partners may be more likely to resolve their disputes through alternative channels rather than issue a territorial claim.

In contrast with many other studies of economic interdependence and conflict, we do not include a variable that captures the concept of trade dependence. Typically studies include a variable that measures the share of each state's GDP generated by trade in their measure of exit cost. However, our measure of exit cost extracts the dimensions of trade with the highest exit costs, so states that have a high value on our measure have a high exit cost. As we include the lower GDP in the dyad, this effectively controls for the size of the economies in (potential) dispute, removing the need to include a measure of trade dependence in each state's economy.

This common practice carries with it the, often implicit, assumption that all sectors

of trade are equally important to a government from a domestic political perspective. Given the extensive body of literature on trade policy lobbying by firms (Grossman & Helpman 1994, Kim 2017), this assumption is potentially problematic. If a state cuts off all trade with a neighboring state due to a border dispute, the political costs to the leader are not constant in the monetary costs to the affected industries. Industries that support the leader are more likely to punish them for infringing on their profits. By seeking out dimensions of trade with high variance, our measure has the side effect of discovering dimensions of trade where certain countries enjoy a comparative advantage. Any state with a high value on a component of trade will export much more of that component than the majority of other countries. The specific industries within that country that contribute to its high score on that component are likely to enjoy outsize political influence domestically. Our measure of exit cost also yields components of trade where those exit costs will likely be highly salient to leaders, freeing us from the need to measure trade dependence or salience.

Model

We evaluate Hypothesis 1 using logistic regression due to the binary nature of the outcome variable. To account for time dependence, we follow Carter & Signorino (2010), and include the cubic polynomial of the time since the last territorial dispute onset. We measure time from the last onset of a claim over the same dispute in a dyad for the full time of the ICOW territorial claims data starting in 1816. A claim is considered to be a new issuance pursuant to the coding rules of the ICOW territorial claims dataset.

We test Hypotheses 2 and 3 using multinomial logistic regression due to the categorical nature of the outcome variable. While status quo is a natural baseline outcome, there is no inherent ordering to settlement attempts, militarized escalation, and both settlement and escalation. We use status quo as the omitted category for our analyses. In addition, in

order to attempt to control for time dependence we include measurements taken from the ICOW territorial claims dataset to account for previous attempts at settlement or previous conflicts. The first is a count of the years since a war was fought over the territory weighted by how recent the conflict was. We also include two measurements of the years since a settlement attempt occurred in the dyad, one indicates whether there was successful attempt and the other an unsuccessful attempt.

In both analyses we employ robust clustered standard errors clustered on the dyad to account unobserved heterogeneity at the dyad level. This corrects for the fact that observations within dyads are likely to be more highly correlated than those between dyads. We cluster on the undirected dyad as the unobserved characteristics in a dyad are at the state level and thus are constant regardless of whether a state is the challenger or target. As our data are reported annually, all predictors are lagged one year to reduce endogeneity concerns.

Results

Table 1 presents the results for our first hypothesis in numerical form. Exit cost is a positive and significant predictor of a new territorial claim onset against a neighboring trading partner. This provides initial support for the first hypothesis which contends that increasing exit costs may prompt states to issue new claims as the propensity for a trade partner to exit declines as the relative uniqueness of trade increases. As discussed above all predictors are lagged one year to reduce the possibility of endogeneity bias.

Figure 5 presents the predicted probability of territorial claim onset as a function of exit cost. All other variables are held at their central tendencies. At low values of exit costs, the predicted probability of a dispute onset is low and begins to increase as exit costs

	Model 1
Exit Cost	0.0619^*
	(0.0151)
Joint Polity	-0.0331
	(0.0254)
ln(Capability Ratio)	0.00173
	(0.611)
Ally	0.293
•	(0.316)
ln(Minimum GDP)	0.248*
,	(0.105)
ln(Commodities)	0.103
,	(0.0662)
Joint OECD	0.287.
	(0.313)
Cold War	- 0.285
	(0.317)
(Constant)	-5.003*
,	(1.214)
Polynomial Time	<u>√</u>
N	28,268
n values in parentheses	•

p-values in parentheses

Table 1: Logistic regression of territorial claim onset

increase.

This finding aligns with our expectations about the relationship between exit costs and the initiation of territorial claims against neighbors. When exit costs are low, states face very few penalties for terminating trade. As costs increase, the price to pay for ending or restricting the trading relationship increases for both parties, a new claim is a relatively cheap signal.

Table 2 presents the results for our second and third hypotheses in numeric form.

As noted in Table 2, the coefficient for settlement attempts is negative and statistically significant. This is consistent with our hypothesis that as states become more deeply

^{*} p < 0.05

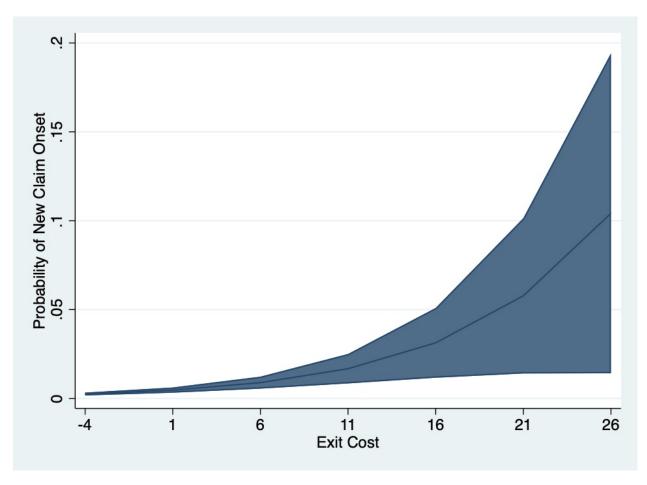


Figure 5: Predicted probability of new territorial claim onset. All other variables held at their central tendencies. Shaded region represents 95% confidence interval.

interconnected and their trade becomes harder to replace, they will be less likely to see a settlement attempt. The coefficient for exit cost is not statistically significant for either escalation or the both category.

Figure 6 presents the predicted probability of potential statuses of ongoing territorial disputes as a function of exit cost. The predicted probability plot adds some nuance to our findings. Status quo outcomes serve as the baseline category, with all other outcomes predicted relative to it. At lower exit costs, negotiated settlement attempts are the most likely outcome. The predicted probability of both a settlement attempt and a militarized escalation remains consistently indistinguishable from zero across the range of exit costs.

	Model 2		
	Settlement	Escalation	Both
Exit Cost	0327*	-0.00980	-0.0274
	(0.0113)	(0.0114)	(0.0169)
Joint Polity	0.00350	0.0254*	0.0140
	(0.00841)	(0.0117)	(0.0138)
ln(Capability Ratio)	- 0.00514	-0.0441	0.00805
	(0.0499)	(0.0500)	(0.0951)
Ally	0.206	-0.0524	0.443
	(0.154)	(0.204)	(0.250)
ln(Minimum GDP)	0.0822	0.0238	0.0126
	(0.540)	(0.0460)	(0.0605)
ln(Commodities)	0.0556	0.0447	0.00522
	(0.0357)	(0.0398)	(0.0567)
Cold War	-0.229*	0.0922	-0.185
	(0.540)	(0.144)	(0.173)
Joint OECD	-0.0144	-0.707*	-1.037^*
	(0.176)	(0.248)	(0.260)
W Last War	0.0955	0.597^{*}	0.538*
	(0.0691)	(0.0732)	(0.0878)
W Last Sett Yes	0.265^{*}	0.018^*	0.129
	(0.0584)	(0.0545)	(0.0766)
W Last Sett No	0.323^{*}	0.0741	0.271^{*}
	(0.0416)	(0.0550)	(0.0362)
(Constant)	-1.843*	-3.064*	-3.190*
	(0.393)	(0.0406)	(0.658)
N		4,022	

p-values in parentheses

Table 2: Multinomial logistic regression of territorial claim management

The predicted probabilities align with our theoretical expectations for hypothesis three and do not lend support to hypothesis 2. As exit costs increase, the probability of a settlement attempt declines. This makes sense as the majority of territories under dispute in this analysis are coded as economically or strategically salient. These disputes thus involve claims over territory that can alter the balance of power between states. When exit costs for the challenger are high, they have higher leverage over the target. While the challenger must forgo increasing revenue, the target will be deprived of more important commodities.

^{*} p < 0.05

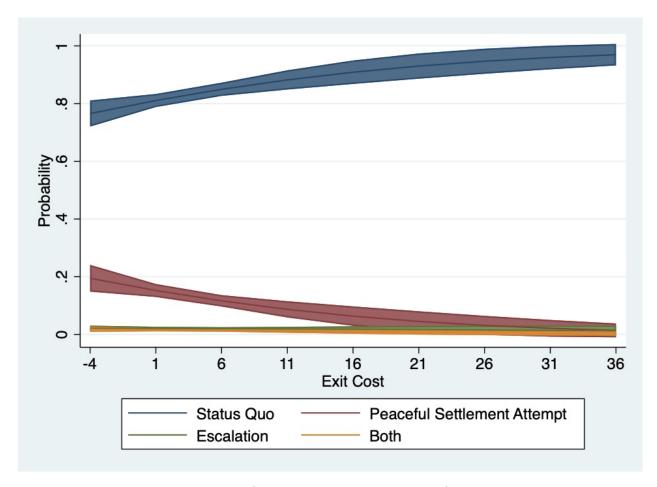


Figure 6: Predicted probability of settlement and escalation for ongoing territorial claims as a function of exit cost obtained via the delta method. Shaded regions represent 95% confidence intervals.

The statistically significant and negative coefficient for exit costs for settlement attempts might suggest a more nuanced and complex relationship to settlement. Exit costs can reach a tipping point in higher ends of our measure such that it becomes prudent for states to reach a strategic stalemate rather than attempt to settle their dispute as demonstrated by the predicted probability plot.

Discussion

To lend additional support to our cross-national findings, we now turn to a brief historical account of a dispute between Turkey and Greece over there unsettled territorial claims. The Issue Correlates of War dataset lists the Aegean dispute as beginning in 1964, although the disagreement did not become entrenched until Turkey granted petroleum exploration permits in the region in the 1970s (Yiallourides 2019, 43). In response, Greece filed a case with the International Court of Justice (ICJ) in 1976, asking that both nations suspend unilateral petroleum exploration and that the court delimit the continental shelf. The court found that it did not have jurisdiction and did not issue a ruling (International Court of Justice 1978). This decision set the stage for continuing disputes over the Sea.

In early 1996 Greece and Turkey narrowly avoided a conflict over a rocky outcropping off the shore of Turkey referred to as Imia by Greece and Kardak by Turkey (AP 1996). In the wake of this confrontation, the US and NATO applied pressure to seek a resolution to the dispute. Later that year in opposing letters to the Secretary General of the UN, Greece claimed it was within its rights to extend its territorial waters from their current six nautical mile limit to the accepted 12 nautical mile distance recognized in the United Nations Convention on the Law of the Sea (Zacharakis 1995), while Turkey claimed that doing so would deny it access to the Aegean and transform it into a "Greek lake" (İnal Batu 1995). The dispute remains unresolved to this date, with Greece recently seeking to expand its territorial waters from six to 12 nautical miles along its Western, Italian-facing coast in an attempt to further buttress its claims in the Aegean (Walker & Pop 2020).

Figure 7 presents the history of each nation's exist costs during the dispute through the end of our sample period in 2001. Although the dispute officially began in 1964 (represented by the dashed vertical line), neither Greece nor Turkey made any attempt to settle the matter until 1975. Each dotted vertical line represents a year with settlement attempts

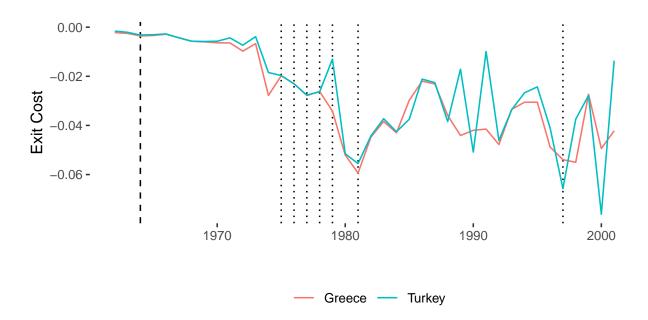


Figure 7: Exit cost in the Aegean dispute. The dashed line represents the first territorial claim in the dispute and the dotted lines represent settlement attempts

by both parties. There are no years in the data where Greece seeks to resolve the dispute while Turkey refuses to come to the bargaining table, or vice versa.

The first attempt at resolution in the 1970s occurred after a notable drop in joint exit costs. Multiple subsequent settlement attempts are accompanied by decreasing exit costs, reflecting the finding in Table 2 that exit cost is negatively associated with settlement attempts. Similarly, the settlement attempt in the 1990s fall in a precipitous drop in exit cost between two higher points, suggesting that as leverage over the other side decreased, both parties were more willing to attempt to settle the dispute.

This pattern reflects the unwillingness of states to engage in settlement attempts when the potential costs are high. If one or both states have a high degree of economic leverage, they can propose highly unfavorable terms. When exit cost is low, the opposing state possess less leverage over the proposing state, so terms will be more favorable. By only engaging in settlement attempts when exit costs are low, each side can claim to be acting in good faith towards the resolution of the dispute. However, this behavior is also strategic

because it ensures that the ability of the opponent to extract concessions will be minimized.

Conclusion

This paper examines how exit costs affect the propensity for territorial claim-making in dyads as well as the impact of exit costs on settlement attempts and escalation to violence. To address this, we develop a novel measurement of exit costs using two billion observations of product-level trade data and principal component analysis to capture the ability of states to supplement a disputant's trade based on how unique that trade relationship is relative to the global economy. Our measure extends previous work by incorporating all 1,396 commodity codes into our measure, capturing the underlying variation in trade data while omitting statistical noise, produces a measure that varies yearly. Using this measure, we find that increasing exit costs decrease the propensity for new-claims to be initiated in a dyad among non-OECD countries. At the second stage, we find that increasing exit costs initially increase the propensity for states to attempt settlement but as exit costs surpass a threshold it becomes unlikely that settlement attempts will be made. There is no statistically significant relationship at present between exit costs and the escalation to violence but in predicted probabilities there appears to be a decreased likelihood of conflict onset at low-levels of exit costs but as exit costs increase the propensity for conflict increases.

By developing a measure of exit cost derived from the full depth and breadth of economic exchange between states, we provide a much richer measure of economic interdependence. The severity of weaponized interdependence matters not only on the volume of trade, but its uniqueness. If one trade partner has many alternative trading partners that can meet the same composition of goods and services, the threat of withdrawn exchange is greatly lessened.

Our use of principal component analysis (PCA) yields an intuitive measure of exit cost and economic interdependence between states. PCA is a dimensionality reduction method seeks to maximize the variance retained in a simplified output. Commodities with the highest variance are those that are both rare and unevenly traded. The rarer they are, the fewer alternative trade partners exist. Even if a commodity is commonplace, if only a handful of states export it, finding new trading partners can be a costly process. The more states export a commodity, the higher the likelihood that an alternative trade partner can be found close to home, resulting in a lowered transaction costs.

The unsupervised nature of PCA means that we are freed from having to a priori identify strategic or salient commodities, reducing the sensitivity of any results. Additionally, all commodities are equally eligible to contribute to the measure, allowing it to better capture economic dependence over time. The weights assigned to various commodities in the procedure used to generate the principal components align with preexisting understandings of which commodities, such as petroleum products and advanced manufactured goods, are especially salient in international trade. Our measure of exit cost thus has concurrent validity with previous measures while introducing more nuance via the inclusion of more differentiated commodity data.

This preliminary study leaves several avenues for additional research. In this study, we remain purposefully agnostic regarding where foregone trade is diverted to when border disputes are initiated. In future research, given the disaggregated data used to develop the measure, we can potentially account for changing commodity flows to regional or global trade partners. Building off of research connecting the settlement of border disputes and trade relations, our measurement can help identify how trade evolves following border settlement.

References

- Abramson, Scott F & David B Carter. 2016. "Systemic Uncertainty and the Emergence of Border Disputes." *American Political Science Review* 10(4):675–698.
- AP. 1996. "Charges Fly As the Greeks And Turks Avert a War." The New York Times.
- Barbieri, Katherine. 1996. "Economic interdependence: A path to peace or a source of interstate conflict?" *Journal of Peace Research* 33(1):29–49.
- Barbieri, Katherine. 2002. The liberal illusion: Does trade promote peace? University of Michigan Press.
- Carter, David B. 2010. "The strategy of territorial conflict." American Journal of Political Science 54(4):969–987.
- Carter, David B. 2017. "History as a double-edged sword: Historical boundaries and territorial claims." *Politics, Philosophy & Economics* 16(4):400–421.
- Carter, David B. & Curtis S. Signorino. 2010. "Back to the Future: Modeling Time Dependence in Binary Data." *Political Analysis* 18(3):271–292.
- Carter, David B. & H. E. Goemans. 2013. "The Temporal Dynamics of New International Borders." Conflict Management and Peace Science.
- Carter, David B & Hein E Goemans. 2011. "The making of the territorial order: New borders and the emergence of interstate conflict." *International Organization* 65(2):275–309.
- Carter, David B & Hein E Goemans. 2018. "International trade and coordination: Tracing border effects." World Politics 70(1):1–52.
- Crescenzi, Mark JC. 2005. Economic interdependence and conflict in world politics. Lexington Books.

- Crossley, Gabriel & Sanjeev Miglani. 2020. "China, India Agree to Disengage Troops on Contested Border." Reuters .
- Dhar, Biswaji & KS Chalapati Rao. 2020. India's Economic Dependence on China. Report The India Forum.
- Ellis-Petersen, Hannah. 2020. "China and India Move Troops as Border Tensions Escalate." $The\ Guardian\ .$
- Fearon, James D. 1995. "Rationalist Explanations for War." *International Organization* 49(3):379–414.
- Feenstra, Robert C, John Romalis & Peter K Schott. 2002. U.S. Imports, Exports, and Tariff Data, 1989-2001. Working Paper 9387 National Bureau of Economic Research.
- Frederick, Bryan A, Paul R Hensel & Christopher Macaulay. 2017. "The issue correlates of war territorial claims data, 1816–20011." *Journal of Peace Research* 54(1):99–108.
- Gartzke, Erik, Quan Li & Charles Boehmer. 2001. "Investing in the peace: Economic interdependence and international conflict." *International organization* 55(2):391–438.
- Gibler, Douglas M. 2012. The territorial peace: Borders, state development, and international conflict. Cambridge University Press.
- Grossman, Gene M. & Elhanan Helpman. 1994. "Protection for Sale." *The American Economic Review* 84(4):833–850.
- Hastie, Trevor, Jerome H. Friedman & Robert Tibshirani. 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Second edition, corrected 12th printing. ed. New York: Springer.
- Hensel, Paul R. 1996. "Charting a course to conflict: Territorial issues and interstate conflict, 1816-1992." Conflict Management and Peace Science 15(1):43-73.

- Hensel, Paul R. 2001. "Contentious issues and world politics: The management of territorial claims in the Americas, 1816–1992." *International Studies Quarterly* 45(1):81–109.
- Hirschman, Albert O. 1945. "National Powerand the Structure of Foreign Trade." Berkeley &Los Angeles, CA: University of CaliforniaPress. HirschmanNational Power and the Structure of Foreign Trade1945.
- Huth, Paul K, Sarah E Croco & Benjamin J Appel. 2011. "Does international law promote the peaceful settlement of international disputes? Evidence from the study of territorial conflicts since 1945." American Political Science Review 105(2):415–436.
- Huth, Paul K & Todd L Allee. 2002. The democratic peace and territorial conflict in the twentieth century. Vol. 82 Cambridge University Press.
- Huth, Paul, Sarah Croco & Benjamin Appel. 2012. "Law and the use of force in world politics:

 The varied effects of law on the exercise of military power in territorial disputes."

 International Studies Quarterly 56(1):17–31.
- Inal Batu. 1995. "Letter dated 21 June 1995 from the Permanent Representative of Turkey to the United Nations addressed to the Secretary-General." Letter.
- International Court of Justice. 1978. Aegean Sea Continental Shelf (Greece v. Turkey).
- Jakhar, Pratik. 2020. "India and China Race to Build along a Tense Frontier." BBC News.
- Jolliffe, I.T. 2002. *Principal Component Analysis*. Springer Series in Statistics 2nd ed. ed. New York: Springer.
- Kim, In Song. 2017. "Political Cleavages within Industry: Firm-Level Lobbying for Trade Liberalization." American Political Science Review 111(1):1–20.
- Kim, In Song, Steven Liao & Kosuke Imai. 2019. "Measuring Trade Profile with Granular Product-level Trade Data." *American Journal of Political Science*. Forthcoming.

- Kocs, Stephen A. 1995. "Territorial disputes and interstate war, 1945-1987." The Journal of Politics 57(1):159–175.
- Lee, Hoon & Sara McLaughlin Mitchell. 2012. "Foreign direct investment and territorial disputes." *Journal of Conflict Resolution* 56(4):675–703.
- Leeds, Brett, Jeffrey Ritter, Sara Mitchell & Andrew Long. 2002. "Alliance Treaty Obligations and Provisions, 1815-1944." *International Interactions* 28(3):237–260.
- Mansfield, Edward D & Brian M Pollins. 2001. "The study of interdependence and conflict:

 Recent advances, open questions, and directions for future research." *Journal of Conflict Resolution* 45(6):834–859.
- Marshall, Monty G., Ted Robert Gurr & Keith Jaggers. 2014. POLITY IV PROJECT: Dataset Users' Manual. Codebook Center for Systemic Peace.
- Mattes, Michaela. 2008. "The effect of changing conditions and agreement provisions on conflict and renegotiation between states with competing claims." *International Studies Quarterly* 52(2):315–334.
- Oneal, John R & Bruce M Russet. 1997. "The classical liberals were right: Democracy, interdependence, and conflict, 1950–1985." International Studies Quarterly 41(2):267–293.
- Owsiak, Andrew P. 2012. "Signing up for peace: International boundary agreements, democracy, and militarized interstate conflict." *International Studies Quarterly* 56(1):51–66.
- Owsiak, Andrew P. & Sara McLaughlin Mitchell. 2019. "Conflict Management in Land, River, and Maritime Claims." *Political Science Research and Methods* 7(1):43–61.
- Owsiak, Andrew P & Toby J Rider. 2013. "Clearing the hurdle: Border settlement and rivalry termination." The Journal of Politics 75(3):757–772.

- Pasricha, Anjana. 2019. "Xi and Modi Meet, Focus on Trade, Border.".
 - URL: https://www.voanews.com/south-central-asia/xi-and-modi-meet-focus-trade-border
- Peri, Dinakar. 2020. "Indian, Chinese Troops Face off in Eastern Ladakh, Sikkim." The Hindu.
- Peterson, Timothy M. 2014. "Dyadic Trade, Exit Costs, and Conflict." *Journal of Conflict Resolution* 58(4):564–591.
- Polachek, Solomon & Jun Xiang. 2010. "How opportunity costs decrease the probability of war in an incomplete information game." *International Organization* 64(1):133–144.
- Powell, Robert. 2002. "Bargaining Theory and International Conflict." *Annual Review of Political Science* 5(1):1–30.
- Rider, Toby J & Andrew P Owsiak. 2015. "Border settlement, commitment problems, and the causes of contiguous rivalry." *Journal of Peace Research* 52(4):508–521.
- Safi, Michael, Hannah Ellis-Petersen & Helen Davidson. 2020. "Soldiers Fell to Their Deaths as India and China's Troops Fought with Rocks." *The Guardian*.
- Schultz, Kenneth A. 2014. "What's in a claim? De jure versus de facto borders in interstate territorial disputes." *Journal of Conflict Resolution* 58(6):1059–1084.
- Schultz, Kenneth A. 2015. "Borders, conflict, and trade." *Annual Review of Political Science* 18:125–145.
- Schultz, Kenneth A. 2017. "Mapping interstate territorial conflict: A new data set and applications." *Journal of Conflict Resolution* 61(7):1565–1590.
- Simmons, Beth. 2006. "Trade and territorial conflict in Latin America: International borders as institutions." Territoriality and Conflict in an Era of Globalization.

- Simmons, Beth A. 2005. "Rules over real estate: trade, territorial conflict, and international borders as institution." *Journal of Conflict Resolution* 49(6):823–848.
- Singer, J. David. 1988. "Reconstructing the Correlates of War Dataset on Material Capabilities of States, 1816–1985." *International Interactions* 14(2):115–132.
- Statistics Division; Economic Statistics Branch. 2019. IMTS Bilateral Asymmetries How to Measure, Analyze, Reduce and Way Forward. Technical report United Nations.
- Stinnett, Douglas M, Jaroslav Tir, Paul F Diehl, Philip Schafer & Charles Gochman. 2002. "The correlates of war (cow) project direct contiguity data, version 3.0." Conflict Management and Peace Science 19(2):59–67.
- Tir, Jaroslav. 2006. Redrawing the map to promote peace: territorial dispute management via territorial changes. Lexington Books.
- Vasquez, John & Marie T Henehan. 2001. "Territorial disputes and the probability of war, 1816-1992." *Journal of Peace Research* 38(2):123–138.
- Walker, Marcus & Valentina Pop. 2020. "Greece Asserts a Maritime Claim, Sending Message to Turkey." Wall Street Journal.
- Wiegand, Krista E, Emilia Justyna Powell & Steven McDowell. 2020. "The Peaceful Resolution of Territorial Disputes Dataset, 1945–2015." *Journal of Peace Research*.
- Wu, Jin & Steven Lee Myers. 2020. "Battle in the Himalayas." The New York Times.
- Yiallourides, Constantinos. 2019. Maritime Disputes and International Law: Disputed Waters and Seabed Resources in Asia and Europe. New York, NY: Routledge.
- Zacharakis, Christos G. 1995. "Letter dated 9 June 1995 from the Permanent Representative of Greece to the United Nations addressed to the Secretary-General." Letter.

A Descriptive Statistics

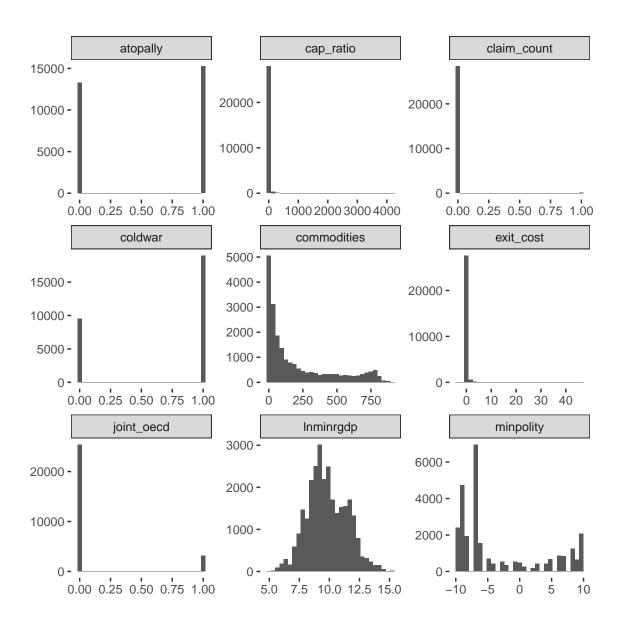


Figure 8: Distributions of variables in onset analysis.

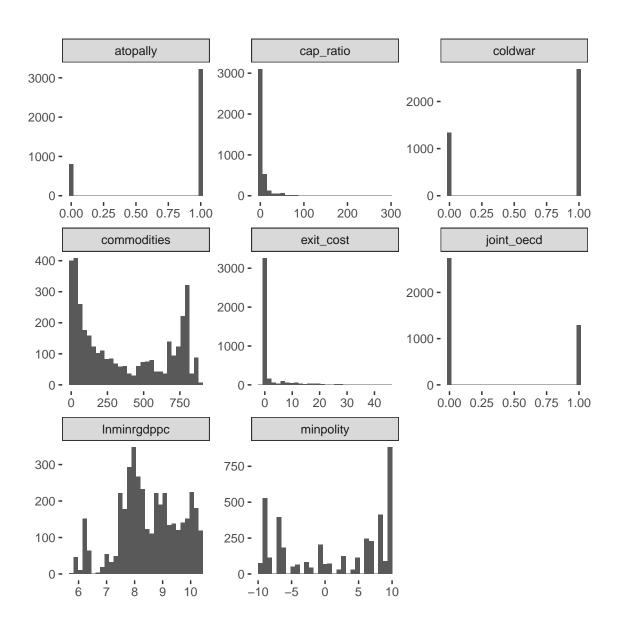


Figure 9: Distributions of variables in management analysis.